PRLS-INVES: A General Experimental Investigation Strategy for High Accuracy and Precision in Passive RFID Location Systems

PRLS-INVES: A General Experimental Investigation Strategy for High Accuracy and Precision in Passive RFID Location Systems Due to cost-effectiveness and easy-deployment, radio-frequency identification (RFID) location systems are widely utilized into many industrial fields, particularly in the emerging environment of the Internet of Things (IoT). High accuracy and precision are key demands for these location systems. Numerous studies have attempted to improve localization accuracy and precision using either dedicated RFIDinfrastructures or advanced localization algorithms. But these effects mostly consider utilization of novelRFID localization solutions rather than optimization of this utilization. Practical use of these solutions in industrial applications leads to increased cost and deployment difficulty of RFID system. This paper attempts to investigate how accuracy and precision in passive RFID location systems (PRLS) are impacted by infrastructures and localization algorithms. A general experimental-based investigation strategy, PRLS-INVES, is designed for analyzing and evaluating the factors that impact the performance of a passive RFID location system. Through a case study on passive high frequency (HF)RFID location systems with this strategy, it is discovered that: 1) the RFID infrastructure is the primary factor determining the localization capability of an RFID location system and 2) localization algorithm can improve accuracy and precision, but is limited by the primary factor. A discussion on how to efficiently improve localization accuracy and precision in passive HF RFID location systems is given.