A Phase-Angle Estimation Method for Synchronization of Grid-Connected Power-Electronic Converters This paper proposes a positive-sequence phase-angle estimation method based on discrete Fourier transform for the synchronization of three-phase power-electronic converters under distorted and variable-frequency conditions. The proposed method is designed based on a fixed sampling rate and, thus, it can simply be employed for control applications. First, analytical analysis is presented to determine the errors associated with the phasor estimation using standard discrete Fourier transform in a variable-frequency environment. Then, a robust phase-angle estimation technique is proposed, which is based on a combination of estimated positive and negative sequences, tracked frequency, and two proposed compensation coefficients. The proposed method has one cycle transient response and is immune to harmonics, noises, voltage imbalances, and grid frequency variations. An effective approximation technique is proposed to simplify the computation of the compensation coefficients. The effectiveness of the proposed method is verified through a comprehensive set of simulations in Matlab software. Simulation results show the robust and accurate performance of the proposed method in various abnormal operating conditions.