High-Latitude Ionospheric Irregularity Drift Velocity Estimation Using Spaced GPS Receiver Carrier Phase Time–Frequency Analysis

High-Latitude Ionospheric Irregularity Drift Velocity Estimation Using Spaced GPS Receiver Carrier Phase Time–Frequency Analysis The conventional spaced-receiver approach uses amplitude scintillations to estimate equatorial ionospheric irregularity drift velocities. This approach is less applicable at high latitudes where there is a lack of substantial amplitude scintillations. This paper presents a method to estimate ionosphere irregularity horizontal drift velocities based on GPS signal carrier phase measurements. Joint time–frequency analysis of the carrier phase measurements using an adaptive periodogram technique generates time-varying spectrograms of ionospheric irregularity-induced phase fluctuations. Cross correlation of the spectrograms between antenna pairs provides time lag information on propagating radio signals through the same ionospheric structure. The time lag information is combined with known positions of the receiver array, satellite orbits, and assumed irregularity altitude to infer ionospheric irregularity horizontal drift velocity. This paper presents the methodology and demonstrates its feasibility using data collected by a GPS receiver array at Gakona, Alaska. The potential error sources of this method are also analyzed.