Performance Analysis of Passive UHF RFID Systems Under Cascaded Fading Channels and Interference Effects In this paper, the performance of monostatic and bistatic passive ultra high frequency radio frequency identification (UHF RFID) systems under the effects of cascaded fading channels and interference is studied. The performance metric used is tag detection probability defined as the probability that the instantaneous received power is higher than the reader’s sensitivity. A closed-form expression of the detection probability is derived using cascaded forward and backscatter fading channels and the reader antennas orientation relative to the tag. Furthermore, the performance of passive UHF RFID systems under reader-to-tag interference caused by both the desired RFID signal and multiple RFID interferers is analyzed, and the effect of constructive and destructive interferences is examined. In addition, the maximum reading range in ideal, multipath fading, and interfering environments is presented. To the best of our knowledge, this is the first work that provides a 3-D performance analysis of the passive UHF RFID systems under cascaded fading channels. The obtained results are very useful for the design and optimization of passive UHF RFID systems from an RF physical channel point of view.